We analyze a recent experiment of Sharon \textit{et al.} (2003) on thecoarsening, due to surface tension, of fractal viscous fingering patterns(FVFPs) grown in a radial Hele-Shaw cell. We argue that an unforced Hele-Shawmodel, a natural model for that experiment, belongs to the same universalityclass as model B of phase ordering. Two series of numerical simulations withmodel B are performed, with the FVFPs grown in the experiment, and withDiffusion Limited Aggregates, as the initial conditions. We observedLifshitz-Slyozov scaling $t^{1/3}$ at intermediate distances and very slowconvergence to this scaling at small distances. Dynamic scale invariance breaksdown at large distances.
展开▼
机译:我们分析了Sharon \ textit {et al。}(2003)最近进行的一项实验,该实验由于表面张力而使径向Hele-Shaw细胞中生长的分形粘性指状图案(FVFP)变粗。我们认为,非强迫性Hele-Shaw模型(该实验的自然模型)与相序模型B属于同一通用类。使用模型B进行了两个系列的数值模拟,以在实验中生长的FVFP和以扩散受限的聚集体为初始条件。我们观察到在中间距离处的Lifshitz-Slyozov缩放比例$ t ^ {1/3} $,在小距离处非常缓慢地收敛到该缩放比例。远距离处的动态标度不变性分解。
展开▼